Design and Analysis of Algorithms

Module 1: Introduction

Characteristics of algorithm. Analysis of algorithm: Asymptotic analysis of complexity bounds – best, average and worst-case behavior; Performance measurements of Algorithm, Time and space trade-offs, Analysis of recursive algorithms through recurrence relations: Substitution method, Recursion tree method and Masters' theorem.

Module 2: Fundamental Algorithmic Strategies

Brute-Force, Greedy, Dynamic Programming, Branch- and-Bound and Backtracking methodologies for the design of algorithms; Illustrations of these techniques for Problem-Solving: Bin Packing, Knap Sack, TSP.

Module 3: Graph and Tree Algorithms

Traversal algorithms: Depth First Search (DFS) and Breadth First Search (BFS); Shortest path algorithms, Transitive closure, Minimum Spanning Tree, Topological sorting, Network Flow Algorithm.

Module 4: Tractable and Intractable Problems

Computability of Algorithms, Computability classes – P, NP, NP-complete and NP-hard. Cook's theorem, Standard NP-complete problems and Reduction techniques.

Module 5: Advanced Topics

Approximation algorithms, Randomized algorithms, Heuristics and their characteristics.